

compoundfiles

[image: Latest release] [https://pypi.python.org/pypi/compoundfiles] [image: Documentation status] [https://compound-files.readthedocs.org/] [image: Build status] [https://travis-ci.org/waveform-computing/compoundfiles]

This package provides a library for reading Microsoft’s Compound File Binary [http://msdn.microsoft.com/en-gb/library/dd942138.aspx]
format (CFB), formerly known as OLE Compound Documents [http://www.openoffice.org/sc/compdocfileformat.pdf], the Advanced
Authoring Format [http://www.amwa.tv/downloads/specifications/aafcontainerspec-v1.0.1.pdf] (AAF), or just plain old Microsoft Office files (the non-XML
sort). This format is also widely used with certain media systems and a number
of scientific applications (tomography and microscopy).

The code is pure Python and should run on any platform; it is compatible with
Python 2.7 (or above) and Python 3.2 (or above). The library has an emphasis
on rigour and performs numerous validity checks on opened files. By default,
the library merely warns when it comes across non-fatal errors in source files
but this behaviour is configurable by developers through Python’s warnings
mechanisms.

Links

	The code is licensed under the MIT license [http://opensource.org/licenses/MIT]

	The source code [https://github.com/waveform-computing/compoundfiles] can be obtained from GitHub, which also hosts the bug
tracker [https://github.com/waveform-computing/compoundfiles/issues]

	The documentation [http://compound-files.readthedocs.org/] (which includes installation instructions and
quick-start examples) can be read on ReadTheDocs

	The build status [https://travis-ci.org/waveform-computing/compoundfiles] can be observed on Travis CI

Table of Contents

	1. Installation
	1.1. Ubuntu installation

	1.2. PyPI installation

	1.3. Development installation

	2. Quick Start

	3. Compliance mechanisms

	4. API Reference
	4.1. CompoundFileReader

	4.2. CompoundFileStream

	4.3. CompoundFileEntity

	4.4. Exceptions

	5. Change log
	5.1. Release 0.3 (2014-09-01)

	5.2. Release 0.2 (2014-04-23)

	5.3. Release 0.1 (2014-02-22)

	6. License

Indices and tables

	Index

	Module Index

	Search Page

1. Installation

The library has no dependencies in and of itself, and consists entirely of
Python code, so installation should be trivial on most platforms. A debian
packaged variant is available from the author’s PPA for Ubuntu users, otherwise
installation from PyPI is recommended.

1.1. Ubuntu installation

To install from the author’s PPA [https://launchpad.net/~waveform/+archive/ppa]:

$ sudo add-apt-repository ppa://waveform/ppa
$ sudo apt-get update
$ sudo apt-get install python-compoundfiles

To remove the installation:

$ sudo apt-get remove python-compoundfiles

1.2. PyPI installation

To install from PyPI [http://pypi.python.org/pypi/compoundfiles]:

$ sudo pip install compoundfiles

To upgrade the installation:

$ sudo pip install -U compoundfiles

To remove the installation:

$ sudo pip uninstall compoundfiles

1.3. Development installation

If you wish to develop the library yourself, you are best off doing so within
a virtualenv with source checked out from GitHub [https://github.com/waveform-computing/compoundfiles], like so:

$ sudo apt-get install make git python-virtualenv exuberant-ctags
$ virtualenv sandbox
$ source sandbox/bin/activate
$ git clone https://github.com/waveform-computing/compoundfiles.git
$ cd compoundfiles
$ make develop

The above instructions assume Ubuntu Linux, and use the included Makefile to
perform a development installation into the constructed virtualenv (as well
as constructing a tags file for easier navigation in vim/emacs). Please feel
free to extend this section with instructions for alternate platforms.

2. Quick Start

Import the library and open a compound document file:

>>> import compoundfiles
>>> doc = compoundfiles.CompoundFileReader('foo.txm')
compoundfiles/__init__.py:606: CompoundFileWarning: DIFAT terminated by FREE_SECTOR
 CompoundFileWarning)

When opening the file you may see various warnings printed to the console (as
in the example above). The library performs numerous checks for compliance with
the specification, but many implementations don’t quite conform. By default
the warnings are simply printed and can be ignored, but via Python’s
warnings [https://docs.python.org/3.3/library/warnings.html#module-warnings] system you can either silence the warnings entirely or convert
them into full blown exceptions.

You can list the contents of the compound file via the
root attribute which can be treated
like a dictionary:

>>> doc.root
["<CompoundFileEntity name='Version'>",
 u"<CompoundFileEntity dir='AutoRecon'>",
 u"<CompoundFileEntity dir='ImageInfo'>",
 u"<CompoundFileEntity dir='ImageData1'>",
 u"<CompoundFileEntity dir='ImageData2'>",
 u"<CompoundFileEntity dir='ImageData3'>",
 u"<CompoundFileEntity dir='ImageData4'>",
 u"<CompoundFileEntity dir='ImageData5'>",
 u"<CompoundFileEntity dir='ImageData6'>",
 u"<CompoundFileEntity dir='ImageData7'>",
 u"<CompoundFileEntity dir='ImageData8'>",
 u"<CompoundFileEntity dir='ImageData9'>",
 u"<CompoundFileEntity dir='SampleInfo'>",
 u"<CompoundFileEntity dir='ImageData10'>",
 u"<CompoundFileEntity dir='ImageData11'>",
 u"<CompoundFileEntity dir='ImageData12'>",
 u"<CompoundFileEntity dir='ImageData13'>",
 u"<CompoundFileEntity dir='ImageData14'>",
 u"<CompoundFileEntity dir='ImageData15'>",
 u"<CompoundFileEntity dir='ImageData16'>",
 u"<CompoundFileEntity dir='ImageData17'>",
 u"<CompoundFileEntity dir='ImageData18'>",
 u"<CompoundFileEntity dir='ImageData19'>",
 u"<CompoundFileEntity dir='ImageData20'>"]
>>> doc.root['ImageInfo']
["<CompoundFileEntity name='Date'>",
 "<CompoundFileEntity name='Angles'>",
 "<CompoundFileEntity name='Energy'>",
 "<CompoundFileEntity name='Current'>",
 "<CompoundFileEntity name='Voltage'>",
 "<CompoundFileEntity name='CameraNo'>",
 "<CompoundFileEntity name='DataType'>",
 "<CompoundFileEntity name='ExpTimes'>",
 "<CompoundFileEntity name='PixelSize'>",
 "<CompoundFileEntity name='XPosition'>",
 "<CompoundFileEntity name='YPosition'>",
 "<CompoundFileEntity name='ZPosition'>",
 "<CompoundFileEntity name='ImageWidth'>",
 "<CompoundFileEntity name='MosiacMode'>",
 "<CompoundFileEntity name='MosiacRows'>",
 "<CompoundFileEntity name='NoOfImages'>",
 "<CompoundFileEntity name='FocusTarget'>",
 "<CompoundFileEntity name='ImageHeight'>",
 "<CompoundFileEntity name='ImagesTaken'>",
 "<CompoundFileEntity name='ReadoutFreq'>",
 "<CompoundFileEntity name='ReadOutTime'>",
 "<CompoundFileEntity name='Temperature'>",
 "<CompoundFileEntity name='DtoRADistance'>",
 "<CompoundFileEntity name='HorizontalBin'>",
 "<CompoundFileEntity name='MosiacColumns'>",
 "<CompoundFileEntity name='NanoImageMode'>",
 "<CompoundFileEntity name='ObjectiveName'>",
 "<CompoundFileEntity name='ReferenceFile'>",
 "<CompoundFileEntity name='StoRADistance'>",
 "<CompoundFileEntity name='VerticalalBin'>",
 "<CompoundFileEntity name='BackgroundFile'>",
 "<CompoundFileEntity name='MosaicFastAxis'>",
 "<CompoundFileEntity name='MosaicSlowAxis'>",
 "<CompoundFileEntity name='AcquisitionMode'>",
 "<CompoundFileEntity name='TubelensPosition'>",
 "<CompoundFileEntity name='IonChamberCurrent'>",
 "<CompoundFileEntity name='NoOfImagesAveraged'>",
 "<CompoundFileEntity name='OpticalMagnification'>",
 "<CompoundFileEntity name='AbsorptionScaleFactor'>",
 "<CompoundFileEntity name='AbsorptionScaleOffset'>",
 "<CompoundFileEntity name='TransmissionScaleFactor'>",
 "<CompoundFileEntity name='OriginalDataRefCorrected'>",
 "<CompoundFileEntity name='RefTypeToApplyIfAvailable'>"]

Use the open() method with a
CompoundFileEntity, or with a name that leads to one,
to obtain a file-like object which can read the stream’s content:

>>> doc.open('AutoRecon/BeamHardeningFilename').read()
'Standard Beam Hardening Correction\x00'
>>> f = doc.open(doc.root['ImageData1']['Image1'])
>>> f.tell()
0
>>> import os
>>> f.seek(0, os.SEEK_END)
8103456
>>> f.seek(0)
0
>>> f.read(10)
'\xb3\x0c\xb3\x0c\xb3\x0c\xb3\x0c\xb3\x0c'
>>> f.close()

You can also use entities as iterators, and the context manager protocol is
supported for file and stream opening:

>>> with compoundfiles.CompoundFileReader('foo.txm') as doc:
... for entry in doc.root['AutoRecon']:
... if entry.isfile:
... with doc.open(entry) as stream:
... print(repr(stream.read()))
...
'"\x00>C'
'\x81\x02SG'
'\x1830\xc5'
'\x00\x00\x00\x00'
'\x9a\x99\x99?'
'\xcf.AD'
'(\x1c\x1cF'
',E\xd6\xc3'
'\x02\x00\x00\x00'
'\x01\x00\x00\x00'
'\x00\x00\x00\x00'
'\x00\x00\x00\x00'
'\xd4\xfe\x9fA'
'\xd1\x07\x00\x00'
'\x05\x00\x00\x00'
'\x00\x00\x00\x00'
'p\xff\x1fB'
'\x00\x00\x00\x00'
'\x02\x00\x00\x00'
'\x01\x00\x00\x00'
'Standard Beam Hardening Correction\x00'
'\x00'

3. Compliance mechanisms

As noted in the CFB [http://msdn.microsoft.com/en-gb/library/dd942138.aspx] specification, the compound document format presents a
number of validation challenges. For example, maliciously constructed files
might include circular references in their FAT table, leading a naive reader
into an infinite loop, or they may allocate a large number of DIFAT sectors
hoping to cause resource exhaustion when the reader goes to allocate memory for
reading the FAT.

The compoundfiles library goes to some lengths to detect erroneous structures
(whether malicious in intent or otherwise) and work around them where possible.
Some issues are considered fatal and will always raise an exception (circular
chains in the FAT are an example of this). Other issues are considered
non-fatal and will raise a warning (unusual sector sizes are an example of
this). Python warnings [https://docs.python.org/3.3/library/warnings.html#module-warnings] are a special sort of exception with particularly
flexible handling.

With Python’s defaults, a specific warning will print a message to the console
the first time it is encountered and will then do nothing if it’s encountered
again (this avoids spamming the console in case a warning is raised in a tight
loop). With some simple code, you can specify alternative behaviours: warnings
can be raised as full-blown exceptions, or suppressed entirely. The
compoundfiles library defines a large hierarchy of errors and warnings to
enable developers to finetune their handling.

For example, consider a developer writing an application for working with
computed tomography (CT) scans. The files produced by the scanner’s software
are compound documents, but they use an unusual sector size. Whenever the
developer’s Python script opens a file the following warning is emitted:

/usr/lib/pyshared/python2.7/compoundfiles/compoundfiles/reader.py:275: CompoundFileSectorSizeWarning: unexpected sector size in v3 file (1024)

Other than this, the script runs successfully. The developer decides the
warning is unimportant (after all there’s nothing he can do about it given he
can’t change the scanner’s software) and wishes to suppress it entirely, so he
adds the following line to the top of his script:

import warnings
import compoundfiles as cf

warnings.filterwarnings('ignore', category=cf.CompoundFileSectorSizeWarning)

Another developer is working on a file validation service. She wishes to use
the compoundfiles library to extract and examine the contents of such files.
For safety, she decides to treat any violation of the specification as an
error, so she adds the following line to the top of her script to tell Python
to convert all compound file warnings into exceptions:

import warnings
import compoundfiles as cf

warnings.filterwarnings('error', category=cf.CompoundFileWarning)

The class hierarchies for compoundfiles warnings and errors is illustrated
below:

[image: _images/warnings.svg]

[image: _images/errors.svg]

To set filters on all warnings in the hierarchy, simply use the category
CompoundFileWarning. Otherwise, you can use intermediate
or leaf classes in the hierarchy for more specific filters. Likewise, when
catching exceptions you can target the root of the hierarchy
(CompoundFileError) to catch any error that the
compoundfiles library might raise, or a more specific class to deal with a
particular error.

4. API Reference

Most of the work in this package was derived from the specification for OLE
Compound Document [http://www.openoffice.org/sc/compdocfileformat.pdf] files published by OpenOffice, and the specification for
the Advanced Authoring Format [http://www.amwa.tv/downloads/specifications/aafcontainerspec-v1.0.1.pdf] (AAF) published by Microsoft.

4.1. CompoundFileReader

	
class compoundfiles.CompoundFileReader(filename_or_obj)

	Provides an interface for reading OLE Compound Document [http://www.openoffice.org/sc/compdocfileformat.pdf] files.

The CompoundFileReader class provides a relatively simple
interface for interpreting the content of Microsoft’s OLE Compound
Document [http://www.openoffice.org/sc/compdocfileformat.pdf] files. These files can be thought of as a file-system in a file
(or a loop-mounted FAT file-system for Unix folk).

The class can be constructed with a filename or a file-like object. In the
latter case, the object must support the read, seek, and tell
methods. For optimal usage, it should also provide a valid file descriptor
in response to a call to fileno, but this is not mandatory.

The root attribute represents the root storage entity in the
compound document. An open() method is provided which (given a
CompoundFileEntity instance representing a stream), returns a
file-like object representing the content of the stream.

Finally, the context manager protocol is also supported, permitting usage
of the class like so:

with CompoundFileReader('foo.doc') as doc:
 # Iterate over items in the root directory of the compound document
 for entry in doc.root:
 # If any entry is a file, attempt to read the data from it
 if entry.isfile:
 with doc.open(entry) as f:
 f.read()

	
root

	The root attribute represents the root storage entity in the compound
document. As a CompoundFileEntity instance, it (and child
storages) can be enumerated, accessed by index, or by name (like a
dict) to obtain CompoundFileEntity instances representing the
content of the compound document.

Both CompoundFileReader and CompoundFileEntity
support human-readable representations making it relatively simple to
browse and extract information from compound documents simply by using
the interactive Python command line.

	
open(filename_or_entity)

	Return a file-like object with the content of the specified entity.

Given a CompoundFileEntity instance which represents a stream,
or a string representing the path to one (using / separators), this
method returns an instance of CompoundFileStream which can be
used to read the content of the stream.

4.2. CompoundFileStream

	
class compoundfiles.CompoundFileStream

	Abstract base class for streams within an OLE Compound Document.

Instances of CompoundFileStream are not constructed
directly, but are returned by the CompoundFileReader.open() method.
They support all common methods associated with read-only streams
(read(), seek(), tell(), and so forth).

	
read(n=-1)

	Read up to n bytes from the stream and return them. As a convenience,
if n is unspecified or -1, readall() is called. Fewer than n
bytes may be returned if there are fewer than n bytes from the
current stream position to the end of the stream.

If 0 bytes are returned, and n was not 0, this indicates end of the
stream.

	
read1(n=-1)

	Read up to n bytes from the stream using only a single call to the
underlying object.

In the case of CompoundFileStream this roughly corresponds to
returning the content from the current position up to the end of the
current sector.

	
readable()

	Returns True, indicating that the stream supports read().

	
seek(offset, whence=0)

	Change the stream position to the given byte offset. offset is
interpreted relative to the position indicated by whence. Values for
whence are:

	SEEK_SET or 0 - start of the stream (the default); offset
should be zero or positive

	SEEK_CUR or 1 - current stream position; offset may be
negative

	SEEK_END or 2 - end of the stream; offset is usually
negative

Return the new absolute position.

	
seekable()

	Returns True, indicating that the stream supports seek().

	
tell()

	Return the current stream position.

	
writable()

	Returns False, indicating that the stream doesn’t support
write() or truncate().

4.3. CompoundFileEntity

	
class compoundfiles.CompoundFileEntity(parent, stream, index)

	Represents an entity in an OLE Compound Document.

An entity in an OLE Compound Document can be a “stream” (analogous to a
file in a file-system) which has a size and can be opened by a call
to the parent object’s open() method.
Alternatively, it can be a “storage” (analogous to a directory in a
file-system), which has no size but has created and
modified time-stamps, and can contain other streams and storages.

If the entity is a storage, it will act as an iterable read-only sequence,
indexable by ordinal or by name, and compatible with the in operator
and built-in len() [https://docs.python.org/3.3/library/functions.html#len] function.

	
created

	For storage entities (where isdir is True), this returns
the creation date of the storage. Returns None for stream entities.

	
isdir

	Returns True if this is a storage entity which can contain other
entities.

	
isfile

	Returns True if this is a stream entity which can be opened.

	
modified

	For storage entities (where isdir is True), this returns the
last modification date of the storage. Returns None for stream
entities.

	
name

	Returns the name of entity. This can be up to 31 characters long and
may contain any character representable in UTF-16 except the NULL
character. Names are considered case-insensitive for comparison
purposes.

	
size

	For stream entities (where isfile is True), this returns
the number of bytes occupied by the stream. Returns 0 for storage
entities.

4.4. Exceptions

	
exception compoundfiles.CompoundFileError

	Base class for exceptions arising from reading compound documents.

	
exception compoundfiles.CompoundFileWarning

	Base class for warnings arising from reading compound documents.

5. Change log

5.1. Release 0.3 (2014-09-01)

	Added a comprehensive test suite and fixed several small bugs as a result
(all to do with invalid file handling) (#2 [https://github.com/waveform-computing/compoundfiles/issues/2])

	Added an mmap emulation to enable reading of massive files on 32-bit systems;
the emulation is necessarily slower than “proper” mmap but that’s the cost
of staying on 32-bit! (#6 [https://github.com/waveform-computing/compoundfiles/issues/6])

	Extended the warning and error hierarchy so that users of the library can
fine tune exactly what warnings they want to consider errors (#3 [https://github.com/waveform-computing/compoundfiles/issues/3])

5.2. Release 0.2 (2014-04-23)

	Fixed a nasty bug where opening multiple streams in a compound document would
result in shared file pointer state (#4 [https://github.com/waveform-computing/compoundfiles/issues/4])

	Fixed Python 3 compatibility - many thanks to Martin Panter for the bug
report! (#5 [https://github.com/waveform-computing/compoundfiles/issues/5])

5.3. Release 0.1 (2014-02-22)

Initial release.

6. License

Copyright 2014 Dave Hughes

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 c

 		 	

 		
 c	

 	
 	
 compoundfiles	

Index

 C
 | I
 | M
 | N
 | O
 | R
 | S
 | T
 | W

C

 	
 	CompoundFileEntity (class in compoundfiles)

 	CompoundFileError

 	CompoundFileReader (class in compoundfiles)

 	
 	compoundfiles (module)

 	CompoundFileStream (class in compoundfiles)

 	CompoundFileWarning

 	created (compoundfiles.CompoundFileEntity attribute)

I

 	
 	isdir (compoundfiles.CompoundFileEntity attribute)

 	
 	isfile (compoundfiles.CompoundFileEntity attribute)

M

 	
 	modified (compoundfiles.CompoundFileEntity attribute)

N

 	
 	name (compoundfiles.CompoundFileEntity attribute)

O

 	
 	open() (compoundfiles.CompoundFileReader method)

R

 	
 	read() (compoundfiles.CompoundFileStream method)

 	read1() (compoundfiles.CompoundFileStream method)

 	
 	readable() (compoundfiles.CompoundFileStream method)

 	root (compoundfiles.CompoundFileReader attribute)

S

 	
 	seek() (compoundfiles.CompoundFileStream method)

 	
 	seekable() (compoundfiles.CompoundFileStream method)

 	size (compoundfiles.CompoundFileEntity attribute)

T

 	
 	tell() (compoundfiles.CompoundFileStream method)

W

 	
 	writable() (compoundfiles.CompoundFileStream method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 compoundfiles

 		
 Installation

 		
 Ubuntu installation

 		
 PyPI installation

 		
 Development installation

 		
 Quick Start

 		
 Compliance mechanisms

 		
 API Reference

 		
 CompoundFileReader

 		
 CompoundFileStream

 		
 CompoundFileEntity

 		
 Exceptions

 		
 Change log

 		
 Release 0.3 (2014-09-01)

 		
 Release 0.2 (2014-04-23)

 		
 Release 0.1 (2014-02-22)

 		
 License

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

